Проблема искусственной гравитации

искусственная гравитация

В последнее время появилось много работ, в которых авторы анализируют возможные последствия длительного пребывания человека в необычном для него состоянии невесомости. Обсуждается, естественно, и проблема создания искусственной гравитации на космическом корабле (под гравитацией понимается действие сил тяготения). В условиях Земли человек ощущает невесомость, как известно, лишь при свободном падении или при полете на самолете по параболической траектории (траектория Кеплера), когда ускорение движения равно ускорению силы тяжести. Все иные способы, например, погружение человека в жидкость, позволяют лишь частично воспроизвести некоторые изменения в функциях организма, возникающие при невесомости.

Часто понятие невесомости и нулевого гравитационного поля отождествляют. На самом же деле между ними есть принципиальное различие, которое можно пояснить следующим образом. Нулевое гравитационное поле (или нулевая гравитация) возможно лишь в отдельных точках космического пространства, где силы притяжения двух или нескольких небесных тел взаимно уравновешиваются. В таких точках невесомость статическая. Любое тело помещенное в такую точку космического пространства, не будет ничего весить.

Динамическая невесомость может возникнуть в любых других точках гравитационного поля, когда сила тяжести уравновешивается центробежной силой. Невесомость этого рода возникает, например, при вращении искусственного спутника Земли по круговой или эллиптической орбите.

Американский ученый Э. Джонс приводит некоторые расчеты, относящиеся к полету космического корабля с Земли на Луну. Выбранная автором траектория полета имеет длину 384 тысячи километров. Примерно через семь часов после старта корабль достигает второй космической скорости и летит с этой скоростью в течение пяти часов, пока не попадет в сферу притяжения Луны. На расстоянии в 350 тысяч километров от Земли корабль проходит точку статической невесомости. На последнем этапе полета продолжительностью около семи часов разность гравитационных сил Земли и Луны будет составлять лишь тысячные доли силы нашего привычного земного тяготения.

Из этого примера следует, что в межпланетном полете на человека могут действовать лишь незначительные гравитационные силы, и он практически будет испытывать состояние статической невесомости.

Исследования влияния невесомости, проведенные при полетах американских космонавтов, показали, что организм человека может приспосабливаться к состоянию относительно кратковременной невесомости. Люди могут находиться в ней без существенных нарушений в системах организма. Однако это приспособление не во всех случаях достаточно совершенно. Кроме того, ученые пока не знают, как перенесет человек длительную невесомость — недели, месяцы. Есть основания думать, что в таких случаях возможны вегетативно-вестибулярные расстройства, которые примут форму болезни укачивания. (А еще интересно как в условиях искусственной гравитации и невесомости люди смогут осуществлять разные привычные действия, например, ту же заправку картриджей, хотя наверняка специалисты, которых можно найти по ссылке tend.kiev.ua/zapravka-kartridzhej/ смогут профессионально заправить картридж и в условиях невесомости).

Резкое снижение мышечной деятельности и уменьшение потребности в энергии могут привести в длительном космическом полете к мышечной адинамии. Невесомость резко снижает нагрузку на сердечнососудистую систему, поскольку отпадает нужда в мышечной работе и облегчается работа сердца по перемещению крови в кровяном русле. Это, в свою очередь, вызывает изменение обменных процессов. Следствием всего этого будет уменьшение потока информации, поступающей в мозговые центры от костно-мышечного аппарата и внутренних органов. А это может сказаться на нервно-психических реакциях космонавта.

Резкие смены условий гравитации могут оказать особенно вредное воздействие на организм, ослабленный адинамией, при возвращении космонавта на Землю и входе в плотные слои атмосферы.

Отмечено, что у американских космонавтов Шепарда, Гриссома и Гленна на этапе перехода от состояния невесомости к перегрузкам наблюдалось резкое учащение пульса, повышение температуры и кровяного давления. У Карпентера эти явления были наиболее продолжительными. Длительная невесомость, по-видимому, будет снижать работоспособность космонавтов и вследствие того, что при таком состоянии затрудняется передвижение по космическому кораблю, ведение ремонтно-монтажных работ, связанных с применением инструментов. Невесомость создает ряд проблем, затрудняющих обслуживание корабля, она делает непригодными открытые контейнеры и камеры для хранения предметов. Из-за нее в кабине корабля будут свободно плавать пыль, грязь и т. д. В целом невесомость может создать серьезные трудности при полете человека на Луну, Марс, Венеру и другие планеты.

Начиная с К. Э. Циолковского (1911 г.), многие ученые (Оберт, Браун и др.) считали, что лучшей защитой космонавта от неблагоприятного действия невесомости может служить искусственная гравитация.

Чтобы понять сущность искусственной гравитации, следует иметь в виду, что на человека, когда он идет на земле, кроме сил, действие которых он отчетливо ощущает (например, сила тяжести, сила трения и др.), действуют еще силы, которые настолько малы, что он их не замечает. К ним относятся центробежная и кориолисова силы инерции. Причиной возникновения этих сил является вращение Земли.

Предположим, что основанием, на котором стоит человек, является не Земля, а внутренняя стенка космического корабля. Если этот корабль будет вращаться вокруг оси симметрии, то на человека будет действовать центробежная сила, которая прижмет его к полу, так же как сила тяжести прижимает человека к Земле. Все части человеческого тела обретут вес, так же как и все предметы, находящиеся на космическом корабле.

Посмотрим, однако, все ли при этом будет так, как на Земле. Оказывается, что нет. Величина центробежной силы зависит от радиуса вращения. А голова и руки человека, стоящего на «полу» кабины космического корабля, ближе к оси вращения, чем ноги. Следовательно, центробежная сила, заменяющая в данном случае силу тяжести, будет непрерывно нарастать в направлении от головы к ногам. Поэтому двигать ногами будет труднее, чем головой и руками. Эту разность величин центробежной силы, действующей на голову и ноги человека, называют гравитационным градиентом.

Чем меньше радиус вращения, тем ощутимее для человека этот градиент. Однако пока нет никаких экспериментальных данных о действии гравитационного градиента. Некоторые исследователи (Пенн, Дол и др.) считают, что разность величин центробежной силы, действующей на голову и ноги человека (в расчете на единицу массы), не должна превышать 15 процентов максимальной величины этой силы. Тогда, если принять, что рост человека равен 1,8 метра, радиус вращения кабины космического корабля должен быть не меньше 12 метров.

Предположим теперь, что человек не стоит на месте, а идет по космическому кораблю. Тогда, кроме центробежной силы, на него начнет действовать кориолисова сила инерции. Человек обязательно почувствует это, так как угловая скорость вращения корабля гораздо больше угловой скорости вращения Земли.

Если человек поднимается по лестнице внутри космического корабля, то кориолисова сила инерции будет стремиться сместить его вправо, если же он опускается, то кориолисова сила будет стремиться сдвинуть его влево. Если же человек будет двигаться в сторону вращения корабля, то сила Кориолиса будет прижимать его к полу, если же он будет двигаться против вращения, то сила инерции будет стремиться его приподнять. Только если человек будет перемещаться параллельно оси вращения корабля, он будет избавлен от действия этой столь непривычной для него силы.

Автор: А. Волков.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *