Квазары и рождение Вселенной
Взглянув на ясное ночное небо, мы увидим мириады таинственно мерцающих звезд. Самые яркие из них, видимые невооруженным глазом, могут быть удалены от нас на несколько тысяч световых лет. При помощи телескопа их можно различить на расстояниях, в тысячи раз больших, — в миллионы световых лет.
На еще больших расстояниях отдельные звезды различать уже невозможно, но их можно видеть объединенными в галактики — звездные системы, подобные нашей, в которой находится Солнце. Эти галактики насчитывают тысячи и сотни тысяч миллионов звезд. Общее излучение таких галактик может быть уловлено на расстояниях в миллиарды световых лет. Свет от них, регистрируемый фотопластинкой, начал свой путь еще в то время, когда на Земле только зарождалась жизнь.
И все же таким путем мы можем охватить лишь небольшую часть Вселенной. Нам необходимо проникнуть гораздо дальше в глубины пространства и времени, чтобы стали яснее история и строение Вселенной. Небесные тела, которые мы можем видеть сейчас,— звезды и галактики — начали формироваться более 10 миллиардов лет назад. Таким образом, надо вернуться, по крайней мере, на 10 миллиардов лет в прошлое, чтобы понять историю развития материи.
До Коперника картина мироздания представлялась человеку несложной. Центром мира была Земля, естественное место концентрации материи. Коперник сдвинул земной шар с этого привилегированного положения. Его последователь и друг Галилея, итальянский философ Джордано Бруно говорил уже о бесконечном числе миров во Вселенной. Она представлялась заполненной небесными телами однородной плотности, равномерно распределенными во времени и пространстве, подобно молекулам газа в замкнутом сосуде.
Первоначально звезды и наше Солнце рассматривались в качестве молекул этого «космического газа». Но после работ американского астронома Эдвина Хаббла «молекулами космологии» стали галактики — эти острова материи, содержащие миллиарды звезд.
Однако природа оказалась сложнее. Галилей был уверен, что одни и те же законы физики применимы и к небесам и к Земле. Но если применить закон всемирного тяготения к газу, заполняющему бесконечный объем (например, к «газу», в котором роль молекул играют галактики), то несложный расчет показывает, что этот газ не может находиться в состоянии равновесия. Будет преобладать либо сила тяготения, либо космическое отталкивание. Образованный галактиками газ должен обязательно расширяться или сжиматься.
В 1926 году наблюдения Хаббла доказали, что Вселенная расширяется. Чем дальше мы проникаем в глубины пространства, тем быстрее разбегаются от нас видимые галактики. Наблюдения неизменно подтверждают закон Хаббла, по которому скорость разбегания галактик пропорциональна их расстоянию от нас.
Галактики на расстоянии 1 миллиарда световых лет имеют скорость разбегания 30 000 километров в секунду, то есть скорости света. Галактики, удаленные на расстояние вдвое большее — на 2 миллиарда световых лет, разбегаются вдвое быстрее, и т. д. Наша Вселенная не статическое, неподвижное образование. Перед нами развертывается картина, меняющаяся со временем.
Поскольку мы живем в эволюционирующей Вселенной, мы не можем не строить предположений о ее прошлом и будущем. Как долго продолжится это разбегание, это расширение Вселенной? Если оно будет длиться бесконечно, то галактики разойдутся друг от друга на столь гигантские расстояния, что свет любой из них уже не дойдет до некогда ближайших к ней соседей. Суждено ли и нашей Галактике, Млечному Пути, превратиться в одинокий остров, плывущий в безбрежной пустоте?
Допустим, мы запускаем фильм истории в обратную сторону — в прошлое, а не в будущее. Мы увидим тогда, как галактики сближаются друг с другом. Примерно 10 миллиардов лет назад вся материя Вселенной была сильно сконденсирована. Расширение должно было начаться из состояния исключительно высокой плотности, а его начало — напоминать взрыв.
Многие астрономы, опираясь на расчеты русского ученого А. Фридмана, приняли гипотезу, согласно которой материя во Вселенной первоначально находилась в сверхплотном состоянии. Путем теоретических расчетов они пытались вывести из этого современные условия Вселенной. Другие делали ряд оговорок, считая, что цепь дедуктивных выводов, протянувшаяся столь далеко в прошлое, зависит от множества самых незначительных обстоятельств, которые могли быть упущены.
Однако благодаря открытию радиоволн, приходящих к нам из бездонных глубин космоса (1965—1966), в море предположений и гипотез появилась первая надежная точка опоры. В области метровых и более длинных радиоволн мы можем принимать радиоизлучение галактик и других небесных тел. В миллиметровом диапазоне излучение в основном образуется в атмосфере и ионосфере Земли. А вот в промежуточном, сантиметровом, диапазоне космос молчит.
При более тщательном исследовании «безмолвного диапазона» было открыто слабое тепловое излучение. Источниками этого некогерентного излучения не являются какие-либо известные небесные тела; оно не приходит из каких-то определенных участков неба. Это «фоновый шум», равномерно заполняющий всю Вселенную и одинаковый во всех направлениях. Он соответствует температуре 3° по шкале Кельвина (шкала абсолютных температур), или —270° по Цельсию.
Фоновое излучение — всего лишь слабый радиошум, но, когда мы осознаем, что оно равномерно заполняет всю Вселенную, его важная роль становится очевидной. Это излучение содержит в миллиарды раз больше фотонов, чем общее число атомов во Вселенной, а плотность его энергии в сотни тысячи раз превышает плотность энергии света, излучаемого всеми звездами.
Если мы путем дедукции придем к выводу, что, чем глубже в прошлое, тем меньшим и меньшим был объем пространства, занимаемый Вселенной, то, чем дальше по времени мы удалимся в прошлое, тем чаще будем встречаться все с более и более интенсивными излучениями и с более и более высокими температурами. Поскольку сейчас температура «фона» составляет 3°К, то 5 миллиардов лет назад она должна была составлять 6° К, а 7 миллиардов лет назад 30° К.
Можно дать только одно объяснение такому большому числу фотонов в космическом пространстве: они образовались в сгустке материи огромной плотности и чрезвычайно высокой температуры, как и должно было быть 10 миллиардов лет назад, когда началось расширение Вселенной.
От этой первоначальной стадии — по мере того как излучение охватывает все больший и больший объем — температура убывает по адиабатическому закону. Нынешняя температура 3° К свидетельствует о том, что начальной точке расширения Вселенной соответствовало особое состояние материи с температурой, превышающее миллион миллионов градусов, причем основную роль играло тогда излучение, а не частицы, из которых построено вещество.
В соответствии с расчетами русского ученого Я. Б. Зельдовича в течение первой секунды расширения температура упала до 10 миллиардов градусов, а к концу первой минуты — до нескольких миллионов градусов. С этого момента вещество стало преобладать над излучением, началось образование первых атомных ядер. В течение первых 10 миллионов лет температура упала до 4 тысяч градусов и в массе ионизованной плазмы появились условия для образования нейтральных атомов, с полным набором окружающих ядро электронов.
После этого протяженные области быстро движущегося газа начали эволюционировать: из каждой сформировалась основа галактики. Постепенно Вселенная приобрела современный вид, а мы тем самым продвинулись из мира не слишком обоснованных предположений к доводам науки, опирающимся на наблюдения.
Вполне естественно, что остаточное излучение с температурой 3° К дает нам лишь общую, не детальную картину рождения атомов и галактик. Информация, которую мы можем получить из нынешнего состояния вещества в атомной форме, также дает нам искаженную картину.
Дело в том, что тяжелые элементы непрерывно рождаются во Вселенной и сейчас. Поэтому почти невозможно выяснить начальную пропорцию различных элементов, определить плотность и температуру на начальном этапе. Вот почему астрономы сочли бы величайшим открытием, если бы удалось получить прямые, неискаженные сведения, дающие нам необходимую информацию о начальной фазе расширения Вселенной.
По сути дела, нам нужны маяки, которые были бы видны на колоссальнейших расстояниях и, следовательно, сияли бы в миллионы и миллионы раз ярче звезд и в сотни раз ярче галактик. Именно такие маяки помогли бы нам проследить в глубинах времени и пространства путь, пройденный Вселенной, и дали бы возможность раскрыть ее строение.
Сейчас крепнет уверенность, что астрономам удалось открыть такие маяки. Эти светила были названы «квазарами» (от quasi-stellar). В действительности они представляют собой особого рода галактики, ошибочно принятые первоначально за звезды.
Продолжение следует.
Автор: Дьердь Маркс.