Плазма – четвертое состояние вещества

Плазма

Древние греки подарили нам, кроме великолепных произведений искусства, прекрасное по своей наивной простоте представление о строении мира. Они считали, что в основе всех вещей лежат четыре «начала», или «стихии»: земля, вода, воздух и огонь. Уже во времена Ломоносова стало известно, что первые три из них — всего лишь различные состояния вещества, которые называются соответственно твердым, жидким и газообразным. А огонь? Долгое время ученые не выделяли его в самостоятельную форму существования материи. И лишь в последние десятилетия удалось проникнуть в тайны огненного состояния вещества, получившего название плазмы.

ОТ ТРЕХ СОСТОЯНИЙ — К ЧЕТВЕРТОМУ

Чтобы понять, чем отличается четвертое состояние от всех остальных, обратимся к «кирпичикам» любого вещества — атомам. Атом каждого вещества состоит из положительно заряженного ядра и оболочки из отрицательно заряженных электронов, движущихся по различным орбитам. Разрушить эту оболочку не просто: силы электрического взаимодействия удерживают электроны на их орбитах.

…В солнечный весенний день можно наблюдать, как тает кусок льда на мостовой. Вот лед потемнел, разрыхлился, под ним появилась вода. Затем над водой закурились тоненькие струйки тумана, а спустя небольшое время исчезла и вода: она испарилась. В обоих этих превращениях электронная оболочка атомов, входящих в молекулу воды, принимает мало участия. Солнечные лучи, нагревая лед, сначала сообщают его молекулам тепловую энергию, достаточную для того, чтобы разрушить кристаллическую решетку льда. Затем тепловая энергия, переданная молекулам воды, разрывает связи между ними — в результате возникает пар. Поместим его в сосуд и станем нагревать.

Придется запастись терпением. Прибор показывает пятьсот, тысячу, две тысячи градусов. Мы все еще ничего не замечаем. Но вот при температуре в несколько тысяч градусов в сосуде возникает слабое свечение, которое становится все более ярким по мере дальнейшего повышения температуры.

Физик скажет, что теперь пары воды перешли в плазменное состояние. А мы и не заметили этого. Но что не видно человеческому глазу, не составляет тайны для чувствительных физических приборов. Они и поведают нам о том, что им удалось «увидеть».

ПЛАЗМА РОЖДАЕТСЯ

На что расходуется тепловая энергия, подводимая к сосуду с газом? На увеличение скорости движения молекул. Они все быстрее носятся в сосуде, чаще и энергичнее сталкиваются друг с другом. При этом электронные оболочки их атомов «сотрясаются» сильнее, пока от них не начинают отрываться внешние, наиболее слабо связанные с ядром электроны. Атомы приобретают положительный заряд и становятся ионами.

Прибор извещает нас: началась ионизация — в газе появились свободные электроны и ионизированные атомы. Температура повышается, и оболочки атомов «трещат по швам». Внутренние электроны стараются выбраться из атома. Но если у самого «выхода» им не поможет новое столкновение, ядро втянет их обратно. При возвращении электроны отдают свою энергию в виде электромагнитного излучения, которое регистрируется прибором. Да мы и сами видим: газ начал светиться.

При дальнейшем повышении температуры свечение в сосуде постепенно становится ослепительно ярким, нестерпимым для глаз. Плазма достигает, если можно так выразиться, идеального состояния: в сосуде остались только свободные электроны и совершенно оголенные ядра атомов. Воображаемый термометр, если его поместить в сосуд, показал бы при этом температуру в несколько миллионов градусов.

ВСЕ НЕ ТАК ПРОСТО

Мы не оговорились. Воображаемым является не только термометр, но и сам опыт. Нагреть газ до такой температуры совсем не так просто, как, например, вскипятить воду в чайнике.

Первая лазейка, через которую ускользает подводимая к газу энергия,— это стенки сосуда, которые нагреваются. Даже если сделать их из теплоизоляционного материала, то и в этом случае температуру можно повышать лишь до того момента, пока газ не начнет светиться. Теперь энергия ускользает из газа в виде электромагнитного излучения. Не помогают при этом и зеркальные стенки.

Очевидно, что энергию в газ надо подводить не тепловым путем. Каким же? Наилучшим способом получения плазмы является электрический разряд. В чем его преимущества? Во-первых, все процессы протекают намного быстрее, чем при химической реакции горения. К тому же длительность разряда можно ограничить миллионными долями секунды, а мощность довести до миллионов киловатт. Это важно: разряд позволяет подводить энергию в газ быстрее, чем она ускользает из газа.

В природе и в быту мы встречаем много примеров электрического разряда в газах. Это молния и вольтова дуга, свечение проводов высокого напряжения и искры в электрической цепи. Но почему электрический ток вообще идет через газы, которые, как известно, являются изоляторами? Вместе с этим вопросом возникает много других, столь же интересных.

ИОНЫ В КОМНАТЕ. ХОЛОДНАЯ ПЛАЗМА

Оказывается, газ является изолятором, так сказать, только теоретически. Практически же он, хоть и слабо, всегда проводит электрический ток. Кое-кто, вероятно, и не подозревает, что в воздухе, которым мы дышим, находятся ионы. Те самые ионы, которые, казалось бы, могут образовываться лишь при очень высоких температурах. Их появление вызвано действием космических лучей, а также радиоактивных веществ, находящихся в земной коре. Правда, этих ионов очень мало, но они и есть та «дорожка», по которой ток входит в газ.

Однако гость в чужом доме может вести себя по-разному. Если напряжение на Электродах невелико, то разряд можно обнаружить лишь при помощи чувствительных приборов — идет слабенький ток, и атомы газа в большинстве остаются нейтральными. Повысим напряжение. Ток увеличится. Все больше атомов газа вовлекается в процесс ионизации, пока, наконец, не возникает лавинный разряд, а с ним и плазменное состояние вещества.

Мы уже знаем, что для того, чтобы получить плазму, надо разогреть газ до высокой температуры. Но дотроньтесь до лампы дневного света. Не бойтесь обжечься: стенки ее совершенно холодные. Между тем ртутный пар в ней светится, а это признак плазмы. Как же так? Дело в том, что в одной и той же плазме могут одновременно существовать несколько разных температур.

Чтобы понять это, вспомним определение температуры — не житейское, а научное. Температура есть мера средней энергии хаотического движения частиц вещества. Чем больше эта энергия, тем выше температура. В ионизируемом газе по меньшей мере три сорта частиц: электроны, ионы и нейтральные атомы. А если имеется смесь газов, то число различных сортов частиц еще больше. Когда газ нагревают, то столкновения между его частицами в конце концов, приводят к выравниванию энергий движения всех видов частиц в нем, то есть к выравниванию температуры. В плазме устанавливается какая-то средняя температура. Такая плазма называется изотермической.

Другое дело — ионизация газа электрическим разрядом. Здесь выравнивания энергий не происходит. Когда через газ проходит ток, то электроны, налетая на нейтральные атомы, почти не изменяют энергию их движения, так как очень легки по сравнению с атомами. Зато электроны могут ионизировать и возбуждать атомы, и тогда возникает свечение. Иными словами, средняя энергия электронов выше, чем средняя энергия ионов, а значит, и температура электронов выше, чем у ионов.

Это неизотермическая плазма. Она существует в лампах дневного света, в которых электронная температура может доходить до десятков тысяч градусов — газ светится. Ионная же температура не превышает комнатной — стенки лампы холодные. Выровнять эти температуры можно лишь при очень высоком давлении.

Продолжение следует.

Автор: В. Рыдник.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *