На берегу нейтринного моря – частица нейтрино

Нейтрино

Содержание:

  • Открытие нейтрино
  • Загадка космических ливней
  • Посланцы Солнца – солнечные нейтрино
  • Нейтринный маскарад
  • Типы нейтрино
  • Нейтринное цунами
  • Космические линзы
  • Ровесники Вселенной – реликтовые нейтрино

    Нейтрино все чаще врывается в нашу жизнь потоком научных сообщений и споров, проектами новых экспериментов, которые поражают воображение грандиозными масштабами и внушительной стоимостью. Целая армия ученых во всем мире с невиданным упорством ищет встречи с этой практически неуловимой частицей. И неудивительно — нейтрино владеет ключами от многих тайн природы.

    В чем секрет поразительной необщительности нейтрино? Оно не подвержено ни электромагнитным, ни мощным ядерным силам. Физики поставили диагноз: нейтрино — носитель нового очень слабого типа взаимодействия. Но поставить диагноз — еще не значит познать природу явления.

    Открытие нейтрино

    Открытие нейтрино было связано с уверенностью исследователей в справедливости фундаментальных законов физики — законов сохранения. В самом начале XX века при изучении бета-распада радиоактивных ядер физики, как скрупулёзные бухгалтеры, старались свести баланс энергии. Но он никак не сходился: часть энергии исчезала неведомо куда. Таким образом, под угрозой оказался один из фундаментальных законов физики — закон сохранения энергии.

    Спас положение швейцарский физик Вольфганг Паули, в 1930 году высказавший предположение, что при бета-распаде вместе с электроном рождается какая-то частица-невидимка, которая и уносит недостающую часть энергии. Незамеченной эта частица остаётся потому, что не имеет массы покоя и электрического заряда и не способна отрывать электроны от атома или расщеплять ядра, иными словами, не может производить те эффекты, по которым обычно судят о появлении частицы. К тому же она очень слабо взаимодействует с веществом, а потому может пройти через большую толщу вещества, не обнаруживая себя. Этой частицей и оказалось наше нейтрино.

    Едва успели обнаружить нейтрино, как оно нанесло сильнейший удар всему зданию физики. Американские ученые Т. Д. Ли и Ц. Н. Янг открыли нарушение одного из фундаментальных законов микромира. Оказалось, что нейтрино, как зачарованная красавица, никогда не может увидеть себя в зеркале. Изменение координат на противоположные (именно так «действует» зеркало) играет криминальную роль в его жизни. Оно превращается в античастицу. В зеркале мы увидим уже антинейтрино. И все процессы, в которых участвует нейтрино, несут на себе отпечаток его необычной судьбы.

    Загадка космических ливней

    Не так давно выяснилось, что нейтрино не следуют правилам поведения, обязательным для остальных частиц. Известно, что чем большую энергию имеет, например, протон, тем более неохотно вступает он в контакт с окружающим веществом. А нейтрино — наоборот. Они становятся все более общительными. Такое изменение «характера» нейтрино влияет прежде всего на его проникающую способность. Если энергия нейтрино очень велика, то для него серьезным препятствием может стать даже атмосфера Земли!

    Это необычное свойство нейтрино навело ученых на одну интересную мысль. В последние годы было обнаружено несколько загадочных широких ливней элементарных частиц, возникающих в атмосфере. Если сложить энергии всех частиц такого ливня, то получится очень большая величина. Физики предполагают, что эти широкие ливни могли быть созданы нейтрино, обладающим такой огромной энергией. Оно прилетает из далекого космоса и застревает в земной атмосфере, порождая гигантские потоки элементарных частиц.

    Впрочем, пока зарегистрировано всего лишь около десяти ливней, поэтому смелая гипотеза нуждается в подтверждении.

    Посланцы Солнца – солнечные нейтрино

    Солнце не только согревает и освещает Землю, но и непрерывно облучает ее потоками нейтрино. Сто миллиардов солнечных нейтрино в секунду падает на каждый квадратный сантиметр поверхности нашей планеты. Они возникают в центре Солнца, в бурлящем ядерном котле, где водород превращается в гелий. Нейтрино — побочный продукт этой реакции. Родившись, они тотчас разлетаются во все стороны, легко преодолевая массу солнечного вещества.

    Как бы долго вы ни смотрели на поверхность супа, ни за что не догадаетесь, густой он или жидкий. Чтобы узнать это, надо помешать суп ложкой. Не имея градусника, невозможно точно определить и его температуру. Нейтрино могли бы стать и ложкой и термометром для определения свойств глубинных слоев Солнца. Только они приходят на Землю, так сказать, в первозданном виде. Свет — электромагнитные волны, которые вместе с нейтрино возникают в центре нашего светила, теряют полученную при рождении информацию в борьбе с солнечным веществом. Ведь свету неизмеримо труднее, чем нейтрино, пробиться на поверхность. Сталкиваясь по дороге с разными частицами, первичные фотоны порождают другие, уже с меньшей энергией. Те, в свою очередь, вступают в неравную борьбу с веществом, передавая эстафету следующему поколению. До поверхности Солнца через миллионы лет, наконец, добираются уже далекие потомки первых фотонов, которые ничего не помнят о своем происхождении. Пытаться по ним судить о процессах, протекающих в солнечном ядре, — все равно, что гадать на кофейной гуще. В то же время необходимая ученым информация в виде солнечных нейтрино буквально «носится в воздухе».

    Солнце

    Нейтринный маскарад

    Астрономические телескопы стараются поднять как можно выше над Землей, чтобы атмосфера не мешала рассмотреть Солнце. «Увидеть» его с помощью нейтрино можно, лишь забравшись поглубже под землю, где фон от космического излучения достаточно мал. «Нейтринный телескоп», который был использован для поисков солнечных нейтрино, устроен очень просто. Это огромный резервуар — более пятисот тонн жидкости, содержащей хлор и обычно используемой для чистки одежды. Столкнувшись с ядрами атомов хлора, нейтрино превращает их в радиоактивные ядра атомов аргона, число которых легко подсчитать с помощью обычного счетчика элементарных частиц. Можно «выловить» даже несколько атомов аргона из всей огромной массы жидкости, находящейся в резервуаре.

    Естественно, что чем дольше будет облучаться бак с жидкостью, тем больше накопится в нем таких нейтринных следов. Три месяца нейтринный телескоп не спускал «глаз» с Солнца, причем наблюдение велось круглосуточно: в нейтринных лучах ночью его видно так же хорошо, как и днем.

    Но все было напрасно. После облучения не удалось обнаружить ни одного атома аргона в жидкости. Поток солнечных нейтрино оказался, по крайней мере, в десять раз меньше расчетного…

    Физиков это не обескуражило. «Расчеты ожидаемого числа нейтрино, — говорят одни, — и не могли претендовать на абсолютную бесспорность, так как основывались на весьма косвенных данных». С другой стороны, можно предположить, как это делает академик Б. М. Понтекорво, что причина неудачи опыта лежит в необычных свойствах самого нейтрино.

    Типы нейтрино

    Нейтрино не одиноко на белом свете. Существует два типа таких частиц — электронные нейтрино, вылетающие вместе с электронами при радиоактивном распаде ядер, и мюонные, возникающие в паре с мю-мезоном при распаде более тяжелой нестабильной частицы. Их приметы совершенно одинаковые. Но, как и очень похожие близнецы, они отличаются друг от друга своим поведением: участвуют в разных ядерных реакциях.

    Не исключено, что свободные электронные нейтрино не всегда остаются электронными, а мюонные — мюонными. Возможно, что в вакууме электронные нейтрино самопроизвольно превращаются в мюонные и наоборот.

    Что же получается? В реакцию с хлором могут вступать только электронные нейтрино. Именно такие частицы и испускает солнечный ядерный котел. Но если по дороге на Землю электронные нейтрино успевают частично превратиться в мюонные, то пойманных невидимок будет значительно меньше, чем их есть на самом деле.

    Может быть, нейтринный маскарад — и есть причина нынешней неудачи в охоте за солнечными нейтрино. Первая попытка не удалась. Сейчас идет перевооружение. Экспериментаторы готовятся к новой встрече с посланцами Солнца.

    Нейтринное цунами

    Много интересного «знают» нейтрино, обрушивающиеся на Землю из далекого космоса. Они доносят до нас мощное дыхание огромных горячих звезд. Энергия теплового излучения этих звезд столь велика, что в их недрах постоянно возникают пары легких частиц — электронов и позитронов. Сталкиваясь друг с другом, они опять превращаются в фотоны теплового излучения. Казалось бы, эта игра, в которой фотоны и электрон-позитронные пары, как мяч, перебрасывают друг другу энергию, может продолжаться бесконечно долго.

    Но нет. Как только температура звезды достигает сотни миллионов градусов, в жизни звезды наступает драматический перелом. При такой температуре некоторые электрон-позитронные пары превращаются не в фотоны, а в пару нейтрино-антинейтрино. Эти частицы уже никогда не столкнутся друг с другом. Заменив в игре электрон-позитронных партнеров, они не передают мяч — энергию, а как озорные мальчишки, нарушая все правила, уносят его (точнее, ее) с собой.

    Эта энергия потеряна для звезды навсегда. И чем выше ее температура, тем больше нейтрино она испускает. Они играют роль окна, распахнутого на улицу из жарко натопленной комнаты. Чтобы комната не остыла, в печь надо подкладывать все больше дров. Так и звезда начинает все интенсивнее расходовать свое термоядерное топливо. Как и температура печи в комнате, повышается температура ее недр, а вместе с ней увеличивается и число испускаемых нейтрино. В последние столетия своей жизни звезды, по-видимому, в основном теряют энергию в виде нейтрино, а не света.

    Эти частицы так быстро расхищают энергетические запасы звезды, что наступает момент, когда ей уже нечем восполнить эту убыль. Горючее звезды — водород — полностью «выгорел». Но звезда не остывает. Как организм человека съедает сам себя при голодании, так и звезда, по-видимому, начинает расходовать гравитационную энергию своей массы.

    Начинается катастрофически быстрое сжатие звезды — коллапс. Интенсивность нейтринного потока невероятно возрастает. В течение сотых долей секунды звезда «выдыхает» больше нейтрино, чем было испущено ею за всю жизнь. По современным представлениям так заканчивают свою эволюцию все звезды с массой большей, чем у Солнца.

    Иногда во время коллапса от звезды отделяется небольшая часть, которая с громадной скоростью расширяется. Астрономы наблюдают свечение этого облака — так называемую вспышку сверхновой. Возможно, что другие звезды коллапсируют спокойно, обходясь без фейерверка.

    Если вспышка сверхновой произойдет в центре нашей Галактики, то мощная нейтринная волна достигнет и нашей планеты. По оценкам, сделанным учеными, ее можно будет зарегистрировать в счетчике, содержащем несколько сотен тонн жидкости. Если несколько таких нейтринных счетчиков расположить в разных местах земного шара, то по последовательности зарегистрированных ими нейтринных сигналов можно будет определить, откуда пришла нейтринная волна.

    Вспышки сверхновых — довольно редкое явление: примерно, одна сверхновая за 300 лет в нашей Галактике. Но если верно предположение о механизме «тихого» коллапса, то нейтринное цунами должно обрушиваться на Землю гораздо чаще — почти раз в месяц! Если когда-нибудь удастся зарегистрировать их, то мы получим возможность, не покидая Земли, узнать об интереснейшем периоде в жизни звезд.

    Космические линзы

    Гравитационному притяжению подвластно все, что имеет массу. Нейтрино не составляют исключения. Хотя масса нейтрино, точнее, масса покоя этой частицы, как и масса покоя фотона, равна нулю, в движении она приобретает инерционную массу.

    Поэтому, если поток нейтрино от какой-либо звезды встретит на своем пути другую звезду или планету, то с ним случится то же самое, что и с параллельным пучком света, падающим на оптическую линзу. Гравитационное поле космического тела, например, звезды, сфокусирует нейтринный поток на определенном расстоянии от своего центра. Это нейтринное фокусное расстояние зависит только от радиуса и плотности звезды.

    Солнце тоже может играть роль такой гравитационной линзы. Оно фокусирует нейтринное изображение звезды в точке, удаленной на сто миллиардов километров от своего центра, то есть на расстоянии, в двадцать раз большем радиуса орбиты самой удаленной планеты солнечной системы — Плутона. Линза-Земля, обращаясь вокруг Солнца, тоже непрерывно фокусирует солнечные нейтрино. Нейтринное изображение Солнца вслед за движением нашей планеты перемещается в пространстве на расстоянии в тысячу миллиардов километров от ее центра.

    Прозрачность гравитационных линз лучше, чем у обычных оптических: ведь свет частично поглощается линзами, а поток нейтрино проходит через звезду практически без потерь. Звезда-линза не вызывает и разброса частиц, дисперсию. Нейтрино любых энергий фокусируются совершенно одинаковым образом.

    Ученый И. Лапидес предполагает, что, используя фокусирующие свойства массивных космических тел, можно было бы «построить» нейтринный телескоп для поисков источников нейтринного излучения. Представим себе, что очень большой космический корабль с хорошо защищенным от космических лучей нейтринным детектором на борту выведен на околосолнечную орбиту с радиусом, равным нейтринному фокусному расстоянию нашего светила. Если корабль движется по поверхности сферы такого радиуса, то можно «прощупывать» участки пространства, расположенные за Солнцем. Как только на линии, соединяющей космический корабль с центром Солнца, окажется испускающая нейтрино звезда, детектор на космическом корабле зарегистрирует резкое увеличение потока нейтрино.

    Для такой цели вполне подошел бы космический корабль, движимый взрывами водородных бомб, над проектом которого работал физик-теоретик Ф. Дайсон. Он считает, что корабль грузоподъемностью в десятки и сотни тысяч тонн может быть построен уже на основе Современного уровня науки и техники.

    Ровесники Вселенной – реликтовые нейтрино

    Мы не знаем, что происходит на Солнце в данный миг. Только через восемь минут световые лучи или солнечные нейтрино сообщат, нам, что Солнце работает нормально…

    Последний крик коллапсирующей где-то на краю Галактики звезды дойдет до нас через много тысяч лет мощным всплеском нейтринной волны или судорогой гравитационного поля. Но как ни долог путь этих вестников далеких событий, мы узнаем голос знакомой нам Вселенной. А такой ли она была миллиарды лет назад?

    Галактика Андромеда

    Если правы ученые, то 10—15 миллиардов лет назад Вселенная совсем не походила на то, что мы сейчас подразумеваем под этим словом. Тогда еще не было звезд, не было Галактики. Существовала лишь сверхплотная раскаленная материя, состоящая из отдельных элементарных частиц, смешанных с излучением.

    Как это ни фантастично, но, по-видимому, до сих пор живы свидетели, видевшие такую Вселенную. На одной из самых ранних стадий ее развития, в так называемую «лептонную эру», основную роль должны были играть легкие частицы-лептоны (мюоны, электроны и позитроны, нейтрино и антинейтрино). Затем нейтрино оторвались от остальной Вселенной, повели независимый образ жизни и поныне скитаются в ее просторах. Многое изменилось с тех пор во Вселенной. Но нейтрино — ее ровесники — еще помнят о том, чему были свидетелями.

    Уже обнаружено реликтовое космическое тепловое излучение, которое, как и нейтрино, возникло на ранней стадии эволюции Вселенной. Если бы удалось найти реликтовые нейтрино, то это позволило бы окончательно решить вопрос о «горячем климате», царившем во Вселенной впервые секунды и минуты ее существования.

    Но надежды встретиться с реликтовыми нейтрино пока невелики. Энергия их так мала, что еще неизвестны достаточно надежные методы, чтобы суметь их зарегистрировать. И все-таки, как считает академик Я. Б. Зельдович, «…поиски реликтовых нейтрино, какими бы сложными они не оказались, чрезвычайно важны…

    Автор: В. Черногорова.


  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *